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A B S T R A C T   

From an ecological and socio-economic perspective, salt marshes are one of the most valuable natural assets on 
Earth. As external pressures are causing their extensive degradation and loss globally, the ability to monitor salt 
marshes on a long-term scale and identify drivers of change is essential for their conservation. Remote sensing 
has been demonstrated to be one of the most adept methods for this purpose and open-source multispectral 
satellite remote sensing missions have the potential to provide worldwide long-term time-series coverage that is 
non-cost-prohibitive. This study derives the long-term lateral evolution of four salt marsh patches in the Ria 
Formosa coastal lagoon (Portugal) using data from the Sentinel-2 and Landsat missions as well as from aerial 
photography surveys to quantitatively examine the accuracy and associated uncertainty in using open-source 
multispectral satellite remote sensing for this purpose. The results show that these open-source satellite ar
chives can be a useful tool for tracking long-term salt marsh extent dynamics. During 1976–2020, there was a net 
loss of salt marsh in the study area, with erosion rates reaching an average of − 3.3 m/yr opposite a tidal inlet. 
The main source of error in the satellite results was the dataset spatial resolution limits, but the specific salt 
marsh shoreline environment contributed to the relative magnitude of that error. The study notes the influence of 
eco-geomorphological dynamics on the mapping of sedimentary environments, so far not extensively discussed 
in scientific literature, highlighting the difference between mapping a morphological process and a sedimentary 
environment.   

1. Introduction 

Salt marshes are a component of the coastal intertidal zone. 
Geographically, they are present from the Arctic to the subtropical lat
itudes in sheltered intertidal areas, but they are most abundant in 
temperate zones (Mcowen et al., 2017). They are characterised by 
periodically inundated vegetated platforms incised with a dendritic 
network of tidal channels and have highly complex 
eco-geomorphodynamics shaped by interrelationships between biolog
ical and physical mechanisms (D’Alpaos, 2011; D’Alpaos and Marani, 
2016; Marani et al., 2006a). 

Salt marshes have a considerable ecological influence on both 
terrestrial and marine systems and thus, the socio-economic system. 
They are multifunctional sites of intense primary and secondary pro
duction (Barbier et al., 2011; Vernberg, 1993), key biodiversity habitats 
(Gopi et al., 2019; Mitsch and Gosselink, 2015), contributors to coastal 

flood defence services (Hoggart et al., 2015; Reed et al., 2018), fixers of 
heavy metals (Moreira Da Silva et al., 2015; Reboreda and Caçador, 
2007) and sinks for atmospheric carbon and nutrients (Caçador et al., 
2016; Lillebø et al., 2010; Sousa et al., 2010). Amongst other ecosystem 
services, salt marshes are also sites of cultural, recreational and scientific 
importance (Barbier et al., 2011; Costanza et al., 1997; Newton et al., 
2018). 

Salt marshes are dynamic, valuable and vulnerable ecosystems for 
which monitoring is a fundamental necessity, yet highly challenging in 
situ due to their large surface area to vertical relief ratio and poor 
accessibility (Silvestri et al., 2003). Despite the great ecological signif
icance of the salt marsh ecosystem, they are not always sufficiently 
protected (Himes-Cornell et al., 2018; Materu et al., 2018; Rogers et al., 
2016). Due to pressures from the environmental drivers and anthropo
genic activities concentrated in the coastal zone, such as sea-level rise 
and channel dredging, salt marsh ecosystems have sustained great losses 
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and remain under significant threat (Gu et al., 2018; Silvestri et al., 
2018; Valiela et al., 2009, 2018). 

Remote sensing allows the collection of global datasets that aid 
spatial and temporal understanding of the Earth as a system and the 
complex interrelations within it from afar and in a cost-effective way 
(Qu et al., 2006). Remote sensing can enable effective and informed 
environmental policy and legislation (El Mahrad et al., 2020; Maes et al., 
2020). It has been demonstrated to support the implementation of the 
European Water Framework Directive (Best et al., 2007; Brito et al., 
2012) and the Ramsar Convention on Wetlands (Chasmer et al., 2020a, 
2020b). It is also vital to ecosystem-based management approaches 
(Nayak, 2004; Ouellette and Getinet, 2016). 

As a technique, remote sensing has its constraints; it requires reliable 
control points for georectification and is reliant on other forms of data 
for validation, and supplementation where necessary (e.g. Darvishzadeh 
et al., 2019; Taramelli et al., 2018). It also needs frameworks and plat
forms for data processing and storage, and even though remote sensing 
is a cost-effective method compared to in situ data collection, using 
remote sensing data like aerial photography may still be cost-prohibitive 
(Mumby et al., 1999; Read et al., 2020). Furthermore, the focus of a 
study must be of a matching temporal, spatial and spectral resolution as 
the remote sensing data, which can be challenging to satisfy in the dy
namic coastal zone. Finally, cloud coverage, inundation and waves can 
be sources of error and render large amounts of remote sensing data 
unusable (e.g. Campbell and Wang, 2018; Canisius et al., 2019; Silvestri 
et al., 2003). Thus, it is vital to select a remote sensing technique that is 
suitable for the study target system and objectives. 

In this study, we evaluate the potential of using the multispectral 
satellite remote sensing data from open-source missions for salt marsh 
shoreline mapping and long-term evolution tracking. The objectives of 
this study are to (1) derive long-term salt marsh shoreline evolutionary 
trends in a sector of the Ria Formosa coastal lagoon; (2) undertake a 
sensitive analysis of the relative accuracy of the satellite remote sensing 
results compared to a commonly implemented higher spatial resolution 
remote sensing technology, aerial photography; and (3) investigate the 
relative shoreline mapping performance of current contemporaneous 
sensors Landsat-8 and Sentinel-2 to explore the suitability of integrating 
their datasets in a salt marsh shoreline monitoring context. 

2. Satellite remote sensing data and application in salt marsh 
mapping 

Satellite remote sensing, a remote sensing technique where data is 
acquired by a sensor on a satellite platform orbiting the Earth, has the 
potential to become one of the most useful tools to delineate and 
monitor the long-term evolution of salt marshes. The key advantage of 
satellite remote sensing is that it provides instantaneous data covering 
large areas, is repeatable and data gathering can be rapid, frequent and 
multidecadal. These attributes give satellite remote sensing an advan
tage over aerial photographs, as although they are of higher resolution, 
aerial photography repositories are globally sparse in their coverage, 
sporadic in revisit frequency, variable in resolution and cost to access. 

Over time, advancement in satellite remote sensing technologies has 
been accompanied by advancements in software and algorithm devel
opment as well as the advent of cloud computing and open-source ar
chives where satellite remote sensing data is freely available (e.g. 
DeLancey et al., 2019; Mahdianpari et al., 2019; Zhu et al., 2019). This, 
coupled with an increasing awareness of the value and vulnerability of 
coastal ecosystems, has meant that research applying satellite remote 
sensing to salt marshes has grown in recent times. As a result, progres
sively more elegant solutions for mapping and monitoring the dynamics 
of increasingly diverse and indirect properties of salt marshes have been 
developed (e.g. Da Lio et al., 2018; Eon et al., 2019; Taramelli et al., 
2018). Currently, salt marsh shoreline delineation studies rely on expert 
visual interpretation or classification techniques, or a combination of 
both (e.g. Farris et al., 2019; Lopes et al., 2020; Sun et al., 2017). In 

semi-automated or automated shoreline delineation methodologies, 
some form of decision tree classification by spectral feature analysis is 
employed depending on the particular study’s requirements and con
straints (e.g. Klemas, 2011; Laengner et al., 2019; Niu et al., 2012). 

To improve delineation accuracy, satellite remote sensing data can 
be integrated with a wide range of additional data sources including 
different classes of remote sensors (e.g. Darvishzadeh et al., 2019; 
Marani et al., 2006b; Tian et al., 2015). Although significant progress 
has been made towards accurate standardised satellite remote sensing 
based automated continent to global level salt marsh mapping and 
monitoring (e.g. Laengner et al., 2019; Mcowen et al., 2017; Reschke 
and Hüttich, 2014), it is not fully resolved (Guo et al., 2017; Wu, 2018). 
A lack of calibration between sensors and spatial resolution limits can 
restrict the extent of time-series and thus the ability to derive long-term 
trends (e.g. Campbell and Wang, 2020; Lopes et al., 2019; Wu, 2019). 
Furthermore, although most studies undertake an accuracy assessment, 
there is a general lack of cross comparability between the studies’ 
measures of accuracy, which can be a barrier to the widespread uptake 
of satellite remote sensing in operational coastal management (Chasmer 
et al., 2020a). 

Spanning almost fifty years, the Landsat programme has risen to 
prominence as one of the most valuable sources for Earth Observations, 
especially for time-series analysis (Holden and Woodcock, 2016; Li 
et al., 2019). The Landsat programme began with Landsat-1 in 1972 and 
the most recent mission, Landsat-8, was launched in 2013. As a result of 
technological advancements during this period, the revisit frequency 
and the spectral and spatial resolution of the Landsat multispectral im
agery improves through time. Operating since 2015, the Copernicus 
programme’s Sentinel-2 mission has twin satellites, 2A and 2B, and the 
highest spatial resolution and revisit frequency of the current multi
spectral open-source satellites. Combining the Landsat archive with that 
of the Sentinel-2 mission results in unrivalled coverage of the Earth, 
which is non-cost-prohibitive, frequent, ongoing, standardised, medium 
to high spatial resolution and multi-decadal in duration. The temporal 
duration of this archive is sufficient to allow the derivation of nuanced 
long-term system dynamics and to locate socio-economic and biophys
ical drivers of coastal ecosystem change (Barbosa et al., 2015; Knight 
et al., 1997; Vernberg, 1993). Long-term time-series are vital for 
assessing salt marsh degradation as these resilient systems may only 
exhibit minor yearly shoreline changes. Focusing on mapping the salt 
marsh extents enables the assessment of key indicators of salt marsh 
degradation such as edge erosion and area loss from drowning. Although 
the spatial resolution of open-source multispectral satellite sensors can 
limit the fine-scale accuracy of tools based on their data, their accuracy 
and spatiotemporal coverage is useful for many ecosystem management 
applications (Reschke and Hüttich, 2014; Waldner et al., 2018). Since 
salt marshes are generally data-poor and insufficiently studied on a 
long-term scale (Wu, 2018), both the research and coastal management 
fields can benefit significantly from the potential of open-source multi
spectral satellite remote sensing data to aid spatiotemporal under
standing of this complex and dynamic ecosystem (Maes et al., 2020; Qu 
et al., 2006). 

As far as we are aware, it is unprecedented to combine all the Landsat 
multispectral sensors in a long-term time-series to examine salt marsh 
shoreline morphological trends. Nor are we aware of any studies that 
compare the relative accuracy of these satellite remote sensing derived 
salt marsh shorelines and evolutionary trends with those derived from 
aerial photography. Studies focusing on validation and cross- 
compatibility of satellite remote sensing data are vital for progressing 
salt marsh scientific research and management (Congalton and Green, 
2019). By quantifying the satellite remote sensing relative accuracy, the 
limitations of using the complete Landsat and Sentinel-2 archive for 
deriving salt marsh shorelines and long-term morphological evolution 
can be defined, along with exploring the interplay between spatial res
olution and shoreline environment. Also, by comparing the salt marsh 
shoreline mapping capability of Landsat-8 with Sentinel-2, the effects of 
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integrating these contemporary missions in salt marsh shoreline studies 
to enhance the spatial resolution and revisit frequency of the 
open-source archive will be clarified. Furthermore, this study supports 
the current need to map and monitor a wide range of salt marshes from 
different climatic regions to improve the accuracy of global level auto
mated salt marsh mapping mechanisms (Lopes et al., 2019) and ad
dresses issues limiting the application of satellite datasets in coastal 
management (El Mahrad et al., 2020). The satellite remote sensing 
method employed herein is designed to be open-access, neither cost nor 
processing power prohibitive, geographically translatable and not 
reliant on high levels of technical expertise to implement. 

3. Methods 

3.1. Study area 

The Ria Formosa lagoon, located on the southern coast of Portugal 
(Fig. 1), is a multi-barrier coastal lagoon system with five barrier islands 
and two sandspit peninsulas which are dynamic but resilient (Kombia
dou et al., 2018). The enclosed lagoon system is almost 55 km long, up to 
6 km wide and rests on a geological basement of barrier platform sand 
(Bettencourt, 1994). The system compromises six tidal inlets and the 
western sector tidal prism revolves around the Faro-Olhão, Armona and 
Ancão inlets (Cravo et al., 2014). The maximum tidal range is 3.5 m and 
the average tidal ranges are from 1.3 m in neap to 2.8 m in spring 
(Pacheco et al., 2008). Any fluvial sources of fresh-water or sediment are 
minor (Andrade, 1990). The average depth of the lagoon is 2 m and 
intertidal geomorphological features are salt marshes, tidal flats and 
complex channel networks which cumulatively cover 90% of the la
goon’s surface (Andrade et al., 2004). 

Salt marsh development in the Ria Formosa lagoon began from the 
middle Holocene (Sousa et al., 2019). Within the Ria Formosa, the salt 
marsh vegetation species distribution is affected by the submergence 
duration and estuarine gradient (Arnaud-Fassetta et al., 2006), as well as 
the frequency of inundation (Balke et al., 2016) and specific soil con
ditions (Contreras-Cruzado et al., 2017). There is a wide variety of 

intertidal vegetation species present in the lagoon (Costa et al., 1996). 
The most frequently encountered species on the salt marsh shoreline are 
Spartina maritima, Sarcocornia perennis and Puccinellietum convolutae 
(Arnaud-Fassetta et al., 2006; Bertrand et al., 2003; Contreras-Cruzado 
et al., 2017; Costa et al., 1996). On the adjacent tidal flats, Zostera noltii 
is commonly found at times interspersed with colonising clumps of 
Spartina maritima and Sarcocornia perennis. Examples of characteristic 
salt marsh morphology and vegetation in the Ria Formosa are presented 
in Appendix A (Fig. A.1). 

The salt marshes examined in this study are located in the centre of 
the lagoon and comprise the North, South, East and West salt marsh 
patches (Fig. 1). These salt marshes are bounded by tidal flats (vegetated 
with seagrasses or non-vegetated), lagoon (estuarine) channels and 
marsh detached beaches (Carrasco et al., 2021). The central salt marshes 
were chosen since they are representative of stable salt marshes less 
influenced by the tidal inlets and are therefore more suitable for an 
overall comparison tracking salt marsh long-term natural dynamics. 

The Ria Formosa is a vital habitat for globally threatened species 
(Correia et al., 2015; Siegenthaler et al., 2015) and provides many 
ecosystem services, especially the regulating and cultural services 
(Newton et al., 2018). As a lagoon system, the Ria Formosa has natural 
stressors (Mateus et al., 2016) and these are compounded by additional 
anthropogenic pressures. The lagoon system is complex and sensitive 
(Cravo et al., 2014), influenced by past land reclamations (Sousa et al., 
2020), inlet stabilisations (Kombiadou et al., 2018) and the dredging of 
navigable channels (Arnaud-Fassetta et al., 2006). These human in
terventions have modified the system’s hydrodynamic and sediment 
regime and identified consequences for the lagoon salt marshes include 
localised shoreline erosion and increased vulnerability to sea-level-rise 
(Carrasco et al., 2021). 

3.2. Salt marsh shoreline identification and mapping 

Four pairs of aerial and Landsat images were used, collected between 
1976 and 2014, alongside three pairs of Landsat-8 and Sentinel-2 images 
collected between 2016 and 2020. The aerial photography images for 

Fig. 1. The geographic location of the salt marsh study site in central Ria Formosa coastal lagoon (Portugal) (the main image contains modified [Blount, 2020] 
Sentinel-2B Level 2A data [24-02-2020], processed by the European Space Agency (ESA); the overview image contains water colour enhanced ML Sentinel-3 OLCI [1- 
03-2016], processed by ESA). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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2002 and 2014 were orthophotograph mosaics while the images from 
1976 to 1989 were individually scanned into digital format. The Landsat 
satellite images were extracted from the United States Geological Survey 
(USGS) Earth Explorer archive (https://earthexplorer.usgs.gov/). From 
1989 onwards, the Landsat images were Collection 1 Landsat Level 2 
Tier 1 products, corrected to surface reflectance as per USGS standard 
and suitable for time-series analyses (U.S. Geological Survey, 2019a; 
2019b, 2019c). Due to lack of an alternative, the Landsat-1 1976 image 
was a legacy terrain corrected product (U.S. Geological Survey, 2018). 
Any lower-quality image registration this entailed was accommodated 
for in the study’s methodology (U.S. Geological Survey, 2019c). The 
Sentinel-2 images for 2016, 2018 and 2020 were sourced from the 
Copernicus Open Access Hub (https://cophub.copernicus.eu/dhus/#/h 
ome). The Sentinel-2 data was atmospherically corrected to land surface 
reflectance (Level 2A) (Louis, 2017). Three GPS transects intersecting 
the salt marsh shoreline in the study area were used for ground truthing. 
The remote sensing and field datasets used in this study are fully 
described in Appendix B (section B.1, Table B.1 and section B.2). 

Visual assessment of a variety of raster display band combinations 
and indexes was undertaken to ascertain which was the most adapted for 
visual salt marsh shoreline delineation in the context of a multi-sensor 
long-term time-series. Out of all the trialled band combinations, the 
colour-infrared demonstrated superior visual distinction of the intertidal 
morphologies and vegetation classes. Of the indexes, the Normalised 
Difference Vegetation Index (NDVI) performed the best but was still 
outperformed by colour-infrared and natural colour as it did not 
distinguish between certain coastal morphologies important to this 
study. The above, combined with the fact that some of the Landsat 
missions in the time-series do not have a blue band, made the colour- 
infrared band combination the best option for the visual delineation of 
salt marshes in the context of this study. The choice of colour-infrared, 
leveraging the near-infrared, red and green bands, was as per recom
mendations from other salt marsh vegetation studies (Kelly et al., 2011; 
Silvestri et al., 2003). Since the salt marsh shorelines at the study site are 
usually either adjacent to tidal flats (vegetated or non-vegetated) or 
marsh detached beaches, discerning the boundary between these mor
phologies was the priority for shoreline identification. The morpholog
ical criteria used for salt marsh shoreline delineation on aerial and 
satellite imagery are described in Supplementary Material, Table S.1. 
Additional morphological criteria (Supplementary Material, Table S.2) 
were used for satellite imagery salt marsh shoreline delineation in 
transitional zones and narrow estuarine channels, as these morphologies 
had a notable effect on the satellite imagery shoreline accuracy. 

The salt marsh shorelines were delineated by hand as line features in 
the GIS environment using expert visual interpretation for each remote 
sensing image (Appendix B, section B.1, Table B.1). The mapped 
shoreline positions were validated using data from literature and field
work undertaken prior to this study (Appendix C, section C.1, Table C.1 
and Fig. C.1). Three topographic transects were overlaid with the sat
ellite imagery and aerial photography shoreline intersection points. 
Horizontal zonation and elevation ranges were deduced for the target 
salt marsh bionomic levels, also based on earlier marsh platform analysis 
(Arnaud-Fassetta et al., 2006). In the absence of specific field data 
defining the lateral shoreline position, the bionomic ranges served to 
identify the approximate boundaries of the lower, middle and high salt 
marsh zones and hence the position of the salt marsh shoreline on the 
transects. The term “low marsh” in this context pertains to the transi
tional zone where isolated salt marsh colonies are present on the tidal 
flats, at times intermixed with seagrass meadows. 

3.3. Salt marsh shoreline analysis 

The shoreline trends and relative accuracy were assessed based on 
the analysis of salt marsh areas, perimeters, shoreline positions and 
rates-of-change. The salt marsh areas were included as an alternative 
method to track salt marsh evolution as opposed to shoreline rate-of- 

change focused time-series. The salt marsh perimeter and the 
perimeter-to-area ratio were included in the analysis because they can 
serve as proxy measures for salt marsh shoreline intricacy. Shoreline 
intricacy can be an indicator of ecosystem fragmentation (Rebelo et al., 
2017), erosion rate magnitude (Leonardi et al., 2016) and a measure of 
the delineation capability for each satellite sensor. 

The Digital Shoreline Analysis System (DSAS; v.5.0 software; Him
melstoss et al., 2018b, 2018a) was employed to undertake the shoreline 
rate and comparison analysis. Transects were cast every 25 m along the 
shorelines as it was found to be an optimal spacing from a computational 
and geometric perspective (i.e., the observed level of shoreline 
complexity). The confidence interval of the regression rates was 90%. 
The shoreline location uncertainty (Morton et al., 2004) was calculated 
for each of the ten digitalised salt marsh shorelines. The method used for 
calculating shoreline uncertainty was aligned with that of other DSAS 
shoreline studies in the Ria Formosa (e.g. Carrasco et al., 2021; Kom
biadou et al., 2018). The digitalisation error for the satellite imagery was 
taken as the pixel size instead of four times the pixel size, as is standard 
for aerial photography (Jabaloy-Sánchez et al., 2014), since the satellite 
imagery shoreline delineation was undertaken at full-resolution zoom. 

The DSAS analysis calculated the following statistics: Net Shoreline 
Movement (NSM), End Point Rate (EPR) and Weighted Linear Regres
sion (WLR) rate. The NSM reports the distance between the oldest and 
the youngest shorelines while the EPR is derived by dividing the distance 
of shoreline movement by the time elapsed between the oldest and the 
youngest shoreline positions. The WLR rate determines a rate-of-change 
statistic by applying shoreline location uncertainty weightings and 
fitting a least squares regression to all shorelines at each transect. The 
EPR uncertainty is the square root of the summed squares of the two 
shoreline uncertainty values divided by the number of years between the 
shorelines (Himmelstoss et al., 2018b). The WLR uncertainty is the 
regionally averaged 90% confidence interval on the linear regression 
line (Ruggiero et al., 2013). Himmelstoss et al. (2018b) provides a 
detailed guide to these statistics. 

In this study, different rate methods were used as complementary 
tools. The NSM was used to directly compare the aerial photography and 
satellite imagery shorelines as well as compare the Sentinel-2 and 
Landsat-8 shorelines. The EPR was used to derive the medium-term 
shoreline trends for 1976–1989, 1989–2002 and 2002–2014, since 
these time-series held insufficient shorelines for the linear regression 
statistics to function. The long-term shoreline trend comparisons for 
1976–2014, 1976–2020 and 1989–2014 were calculated using the 
established WLR rate, which takes account of all the shorelines and their 
positional uncertainties (Himmelstoss et al., 2018b; Morton et al., 
2004). The period 1989–2014 is sub-quadridecadal but was included in 
the comparison analysis to investigate the effect that removing the 
lowest resolution image would have on the accuracy of the satellite 
remote sensing rate predictions. 

4. Results 

4.1. Salt marsh area and perimeter 

The georeferencing results and the salt marsh shoreline accuracy, 
uncertainty and validation can be found in Appendix C (section C.1 and 
Fig. C.1 ). The salt marsh areas and perimeters derived from the delin
eated shorelines are shown in Fig. 2. The aerial photography marsh areas 
are almost constant over time, apart from the South marsh, that shows a 
decreasing trend during 1976–2014 indicative of notable salt marsh 
loss. Across all the salt marsh patches, the satellite imagery areas 
overestimate the aerial photography areas, but the magnitude of over
estimation reduces from 1976 to 2014 (Fig. 2a). This indicates a sub
stantial improvement in salt marsh edge detection accuracy by the 
satellite remote sensing method over time. The South marsh has the 
largest area overestimate and this falls from 0.26 km2 to 0.02 km2 during 
this period (Fig. 2a). The Landsat-8 areas were on average an 
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underestimate of the Sentinel-2 areas, and this underestimate tended to 
increase slightly as the salt marsh area increased (Fig. 2a). 

With regards to the perimeters, the higher the resolution of the 
image, the more accurate the delineation of shoreline intricacies. Thus, 
the aerial photography perimeters are longer than the satellite imagery 
perimeters and the Sentinel-2 perimeters are longer than the Landsat-8 
perimeters. Despite this, the satellite perimeters increasingly underes
timate the aerial photography perimeters during 1976–2014 (Fig. 2b). 
This is because the improvement in the satellite imagery shoreline ac
curacy is masked by the aerial photography rapidly gaining the spatial 
resolution where the transitional zone shoreline intricacies can be 
delineated in detail. The magnitude of the difference between the sat
ellite imagery and aerial photography perimeters increases as the 
perimeter of the salt marsh increases, not as the total area of the salt 
marsh increases, hence the perimeter error is a function of length 
(Fig. 2b). The South marsh, which has the greatest portion of intricate 
transitional shoreline, has the greatest error with its relative perimeter 

underestimate increasing from 4.0 km to 7.7 km over this period 
(Fig. 2b). 

The four salt marshes ranked by increasing perimeter-area ratio are 
North, South, East and West. The percentage by which the satellite 
imagery areas overestimate the aerial photography areas increases as 
the perimeter-area ratio increases for all years and the error rises more 
rapidly the lower the resolution of the dataset (Fig. 3). This finding 
confirms that the salt marsh perimeter-area ratio does have a direct ef
fect on the area inaccuracies of the satellite remote sensing method. 

4.2. Salt marsh shoreline lateral position 

To gauge the shoreline delineation accuracy of the satellite remote 
sensing data, the position of the Landsat shorelines relative to contem
poraneous aerial photography or Sentinel-2 shorelines was calculated. 
The aerial photography shorelines were the baseline for 1976, 1989, 
2002 and 2014. Due to the unavailability of aerial imagery, the Sentinel- 

Fig. 2. Based on the shorelines delineated from satellite remote sensing (SRS) and aerial photography (AP) imagery for 1976, 1989, 2002, 2014, 2016, 2018 and 
2020: (a) the areas of the North, East, West and South salt marshes; (b) the perimeters of the North, East, West and South salt marshes. The uncertainty of these areas 
and perimeters is related to the shoreline positional uncertainty as described in Section 3.2 and Appendix C.1. 

Fig. 3. The satellite remote sensing (SRS) salt marsh area percentage overestimate of the aerial photography (AP) areas plotted against the AP perimeter-area ratios 
of the North, East, West and South salt marsh in 1976, 1989, 2002 and 2014. The trendline coefficient of determination (R2) has been included for each variable. 
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2 shorelines were the baseline for 2016, 2018 and 2020. The results are 
summarised in Fig. 4 and complementary data can be found in 
Appendix D, Fig. D.1. 

The average and maximum distances by which the Landsat shore
lines deviate from the baseline shoreline for each salt marsh are depicted 
in Fig. 4a. For the Sentinel-2 baseline case (2016–2020), the data was 
averaged across the three years. The results confirm that as the spatial 
resolution increases through time, the magnitude by which the Landsat 
shorelines err from the baselines decreases. The average Landsat 
shoreline offsets have a similar range of magnitudes on both sides of the 
baseline while the Landsat maximum shoreline offsets showed an 
increasing bias to inshore extremes post-1976. As the complexity and 
size of the salt marsh increases, so does the magnitude of the satellite 
imagery shoreline displacement error. The maximum shoreline errors 
corresponded to the marshes with the greatest extents of transitional 
zones and to a lesser extent, marsh detached beaches and estuarine 
channels (see Supplementary Material, Tables S.1 and S.2 for their 
morphological description). The standard deviation of the satellite im
agery shoreline error also decreases over time (Fig. 4b). For each year 
the maximum standard deviation is approximately the satellite image 
pixel size, and the minimum standard deviation is close to half the sat
ellite image pixel size. Notably, the 2014 Landsat-8 shoreline was on 
average 2.6 m inshore of the 2014 aerial photography shoreline and the 
2016–2020 Landsat-8 shorelines were on average 1.8 m inshore of their 
comparative Sentinel-2 shorelines (Fig. 4). This suggests that on average 
the Sentinel-2 shorelines are positioned inshore of the actual shoreline, 
but to a lesser extent than is the case for Landsat-8 shorelines. Hence, the 
higher resolution of the Sentinel-2 sensor (10 m) appears to allow better 
detection of the more offshore fragmented salt marsh shorelines. 

Although there is variability in the accuracy of the long-term rates 
derived from the satellite imagery shorelines, in general the aerial 
photography 1976–2014 WLR rates (Fig. 5a) are well approximated by 
the satellite imagery 1976–2014 WLR rates (Fig. 5b). Comparatively, the 
satellite imagery 1989–2014 WLR rates (Fig. 5d) have a slightly 
improved level of accuracy relative to the aerial photography 
1989–2014 WLR rates (Fig. 5c). The erosion bias visible in these satellite 
long-term time-series was less pronounced in the satellite imagery 
1976–2020 WLR rates (Fig. 5e). Ranging between − 2.5 and − 5.7 m/yr, 
the satellite imagery rate of erosion at the toe of the South marsh for 
both 1976–2014 and 1989–2014 mimics the aerial photography values 
well. In addition, a close match between the satellite imagery and aerial 
photography WLR rates was not restricted to areas with high rates-of- 
change. The accreting section of the West marsh, which is adjacent to 
the South marsh, ranges from 0.5 to 3.0 m/yr and the satellite imagery 
rates for both 1976–2014 and 1989–2014 align well with the aerial 
photography rates. There are, however, cases where the satellite imag
ery WLR does not perform so well for minor rates-of-change and there 
are outlier rates-of-change present in the transition zones that are un
matched in the aerial photography rates. The top left of the North marsh 
is an example of this latter phenomenon causing large faux erosion and 
accretion rates (Fig. 5b). 

In 1976–1989, the satellite EPR shoreline rates are heavily exag
gerated and barely approximate the aerial photography EPR 
(Appendix D, Table D.1 and Fig. D.2). By the next time step, 1989–2002, 
the satellite imagery EPR shows significant improvement compared to 
aerial photography EPR as the rate uncertainty reduces by roughly half. 
The satellite imagery 2002–2014 EPR results show further improved 
accuracy and uniformity in approximating the aerial photography EPR 

Fig. 4. For the North, South, East and West marshes: (a) the average and maximum distance of the Landsat satellite remote sensing (SRS) shoreline on either side of 
the baseline (positive distance indicates that the Landsat shorelines are offshore of the baseline); (b) the standard deviation of the distance between the Landsat and 
baseline shorelines. Aerial photography shorelines are the baselines for 1976–2014 and Sentinel-2 shorelines are the baselines for 2016–2020. 
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rates. The erosive area at the toe of the South marsh is detected by the 
EPR for all periods but the 1976–1989 EPR is excessive by several 
magnitudes, as observable in the maximum satellite imagery rate of 
erosion in Table D.1 (Appendix D). The later satellite imagery EPRs 
1989–2002 and 2002–2014 match the equivalent aerial photography 
EPR South toe erosion relatively well. The South toe is eroding non- 
linearly through time with the highest rates of medium-term erosion 
in 1989–2002. In the West marsh accretion zone, the first two satellite 
imagery EPR time-series are a poor match to the aerial photography EPR 
rates. By 2002–2014, however, the satellite imagery EPR and aerial 
photography EPR show closely mirrored accretion rates. At the West 
marsh, the medium-term accretion rates are increasing over time. As is 
evidenced by Fig. 5, Table D.1 and Fig. D.2 (Appendix D), the key EPR 
medium-term and WLR long-term average rate uncertainty for each salt 
marsh is greater for the satellite imagery than aerial photography time- 
series and the rate uncertainties reduce with improving spatial resolu
tion. Compared to the EPR, the WLR rate uncertainty magnitude is lower 
and is not constant between the salt marsh patches, the West marsh has 
the greatest average rate uncertainty and the East marsh the lowest. 

Overall, the satellite imagery WLR long-term shoreline rates-of- 
change and the satellite imagery EPR medium-term 2002–2014 rates- 

of-change are capable of mimicking the aerial photography rates well 
(Appendix D, Fig. D.2 and Fig. D.3). The satellite imagery rate-of-change 
accuracy, especially for the earlier medium-term EPR time-series, varies 
spatiotemporally (e.g. Appendix D, Fig. D.2). Both the aerial photog
raphy and the satellite imagery datasets demonstrate that the salt marsh 
system has active temporally non-linear erosion occurring at the toe of 
the South marsh and to a lesser extent along all the salt marsh shorelines 
that border the Faro Channel (Appendix D, Fig. D.3). Furthermore, the 
eastern flank of the West salt marsh is accreting at an increasing rate 
over time. There were also indications of gradual salt marsh expansion 
into the transitional zones bordering the sheltered channels within the 
study area (Appendix D, Fig. D.3). 

Using the satellite imagery and aerial photography salt marsh areas, 
the medium- and long-term trends in salt marsh areas were calculated 
for the same time periods as for the shoreline trend analysis (Fig. 6). The 
satellite imagery area rates-of-change usually overestimate the aerial 
photography area erosion rates and underestimate the accretion rates 
(Fig. 6a and Fig. 6b). This error decreases as the average spatial reso
lution of the time-series improves, thus demonstrating the typical sat
ellite imagery erosional bias observed in the shoreline rate analysis. The 
satellite imagery area rates are the least erosion biased in the West salt 

Fig. 5. Maps depicting salt marsh shoreline weighted linear regression (WLR) rates (m/yr) for the following time-series: (a) aerial photography (AP) 1976–2014; (b) 
satellite remote sensing (SRS) 1976–2014; (c) AP 1989–2014; (d) SRS 1989–2014; (e) SRS 1976–2020. ([Blount, 2020], contains modified Copernicus Sentinel-2B 
data [24-02-2020], processed by ESA). 
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Fig. 6. Comparison of satellite remote sensing (SRS) and aerial photography (AP) salt marsh evolutionary trends over different time periods ordered by decreasing 
salt marsh size for the studied salt marsh patches, North, South, East and West: (a–b) surface area rates-of-change; (c–d) shoreline lateral position rates-of-change. 

Fig. 7. The satellite remote sensing (SRS) 1976–2014 long-term time-series equivalent overestimate in surface area and average shoreline distance offshore plotted 
against aerial photography (AP) 2014 total salt marsh perimeter. The trendline coefficient of determination (R2) has been included for each variable. 

T.R. Blount et al.                                                                                                                                                                                                                                



Estuarine, Coastal and Shelf Science 266 (2022) 107664

9

marsh and the most biased in the transitional zone rich South and North 
marshes. The comparative summary of the average shoreline rates-of- 
change is presented in Fig. 6c and Fig. 6d. Here the same trends out
lined above are present, as both share the underlying accuracy limita
tions of the satellite remote sensing dataset. These two methods of 
measuring salt marsh extent change, however, appear to have different 
sensitivities to these limitations. The satellite imagery area rates are 
more consistently erosion biased than the satellite imagery shoreline 
average rates. Furthermore, the relative magnitude error between the 
satellite imagery and aerial photography in the area rates is higher and 
notably worse in the earlier time-series than for the shoreline rates. 
Hence, the satellite imagery area rates appear more vulnerable to the 
errors introduced by the inclusion of lower spatial resolution satellite 
imagery in the time-series than the satellite imagery shoreline rates 
(Fig. 4). 

The satellite imagery 1976–2014 long-term time-series average 
shoreline and area rate-of-change errors were used to derive the time- 
series’ equivalent average shoreline offshore bias and area overestimate 
for each of the salt marshes. While the satellite imagery 1976–2014 
time-series equivalent shoreline average offshore bias for the North and 

the South marshes are similar, the time-series surface area overestimate 
error of the South marsh is almost double that of the similar sized North 
marsh (Fig. 7). The South marsh has significantly larger extents of 
transitional zones and in this environment the area evolution embeds 
higher uncertainty than the shoreline lateral evolution. 

5. Discussion 

5.1. Effects of salt marsh geometry and environmental characteristics on 
accuracy 

In this study, the legacy of spatial resolution limitations in the sat
ellite remote sensing data manifests usually as shoreline offshore bias. 
For the shoreline and area evolutionary trends, this transforms into faux 
erosion, which manifests as an overestimation of the aerial photography 
erosion and underestimation of the aerial photography accretion 
(Fig. 6). The faux erosion reduces through time as the accuracy of the 
satellite imagery shoreline delineation increases. The process is non- 
linear since there is faux erosion generated when the satellite imagery 
pixel size halves during 1976–1989 and halves anew during 1989–2002. 

Fig. 8. (a) Map depicting the distribution of salt marsh shoreline environmental categories at the study site and (b) the aerial photography (AP) and satellite remote 
sensing (SRS) 1976–2014 time-series average salt marsh shoreline weighted linear regression (WLR) rates and error associated with each environmental category. 
([Blount, 2020], contains modified Copernicus Sentinel-2B data [24-02-2020], processed by ESA). 
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Each of the salt marsh patches in this study site is unique in geom
etry, boundary conditions and the satellite remote sensing accuracy is 
influenced by these factors (e.g. Fig. 7). The feedback between fine-scale 
border morphologies and spatial resolution limits dictates the extremes 
of the satellite imagery salt marsh mapping errors (e.g. Figs. 4 and 8). 
The greatest source of inaccuracy is the transitional zones (Fig. 8b), the 
fragmented sections of salt marsh intermixed with vegetated tidal flats. 
In such cases, the uncertainties arise not only from the quality of the 
dataset, but also from the ecological and sedimentary dynamics of the 
environments themselves. In contrast to the marsh platform or domi
nantly estuarine (lagoon) zones, which are more stable in their envi
ronmental state, transitional zones represent a morphological state 
shifting between lower and higher levels of maturity or complexity. The 
latter raises the question about the influence of eco-morphological dy
namics on the mapping of sedimentary environments, so far not exten
sively discussed in the scientific literature. In transitional zones there is 
mapping of the morphological process and not necessarily of the 
morphology. In the same way, tidal flats, which have a higher exposure 
to forcing mechanisms, can also be considered as transition zones when 
they shift between non-vegetated to vegetated environments (Fig. 8b). 

To accurately capture the salt marsh shoreline in the transitional 
zone, the spatial resolution of the image needs to be close to the scale of 
the undulating shorelines and the colonising patches of salt marsh. 
Other boundary conditions such as marsh detached beaches and narrow 
estuarine channels can also degrade the satellite remote sensing shore
line accuracy (Fig. 8b), the former causing faux accretion while the 
latter faux erosion. However, unlike the more intricate transitional 
zones, their effect mostly dissipates once a 15 m spatial resolution is 
reached (e.g. Landsat-7 onwards) because at this scale the salt marsh 
shorelines in these environments can be reliably distinguished. A minor 
increase in spatial resolution from 15 m to 10 m was found to improve 
the transitional zone delineation accuracy, as demonstrated by the 
Landsat-8 shorelines being notably inland of transitional zone shorelines 
in comparison to the contemporaneous Sentinel-2 shorelines (Fig. 4 and 
Appendix D, Fig. D.1e). This aligns with the finding of Campbell and 
Wang (2020) that Sentinel-2 was necessary to improve the sensitivity of 
monitoring salt marsh fine-scale change. 

The perimeter-area ratio has been proven useful as a landscape 
metric to measure salt marsh spatial patterns by Wu (2019). By 
employing this ratio in this study as well it was shown that for all the 
satellite sensors, there appears to be a directly proportional relationship 
between satellite imagery salt marsh area overestimation and the 
perimeter-area ratio (Fig. 3). Intricate transitional zones and fragmen
tation of the salt marsh result in a disproportionately large perimeter for 
a given salt marsh area, which is why the North marsh has a greater area 
than the South marsh yet a smaller perimeter (Fig. 2). Thus, the salt 
marsh perimeter-area ratio plotted against the total area can also prove 
useful as an indicator of the relative complexity of the salt marsh 
boundary conditions. If applied to a homogenous spatial resolution 
satellite imagery time-series, the perimeter-area ratio could be used as 
an indicator for a morphological trend such as the overall enlargement 
or fragmentation of the salt marsh platform. 

The satellite remote sensing salt marsh area and shoreline rates-of- 
change have a similar pattern of inaccuracy across the salt marsh 
patches in the medium- and long-term time-series (Fig. 6). Nonetheless, 
the differences in the derivation and the core assumptions of the two 
methods of measuring salt marsh evolution mean that their application 
and interpretation in the context of ecosystem assessment differ. An 
advantage of the area method is that it does not require specific software 
to calculate the rates. However, this simplicity is a limit to the appli
cation of the area method for ecosystem management since its results are 
generalised trends. The shoreline method, in contrast, can be used to 
monitor salt marsh shoreline dynamics in detail on a transect-by- 
transect basis (e.g. Figs. 5 and 8). This enhances the potential of long- 
term time-series to elucidate the salt marsh system response to anthro
pogenic and natural drivers (Perennou et al., 2018; Vernberg, 1993). 

The area rates of evolution are not furnished with rate statistics 
which can aid the interpretation of the significance and uncertainty of 
the trends at multi-levels of detail (Himmelstoss et al., 2018b). Nor does 
the area method allow shoreline uncertainty weighting to be applied to 
reduce satellite remote sensing erosion bias. These functionalities 
possessed by the shoreline method are vital for targeted salt marsh 
ecosystem monitoring. Taking these factors into account, the area 
method on its own does not provide the level of detail required for 
in-depth ecosystem-based management. Especially as the area method is 
slightly more sensitive than the shoreline method to the spatial resolu
tion deficiencies in the open-source satellite datasets (Fig. 6). The area 
and shoreline methods, however, can be considered complementary to 
evaluate geomorphic trends and vulnerability in salt marshes and their 
ecosystem services. The area method supports ecosystem service as
sessments and evaluations (e.g. Muller-Karger et al., 2018; Sun et al., 
2017) as well as stakeholder engagement (e.g. Burdon et al., 2019; 
Ryfield et al., 2019), while the shoreline rates provide detailed identi
fication and monitoring of at-risk shorelines with complementary rate 
statistics and shoreline weightings to reduce implicit biases in long-term 
analyses (e.g. Fernandez-Nunez et al., 2019). 

Likewise, the application of the WLR for long-term trends and EPR 
for medium-term can be complementary in the context of salt marsh 
monitoring through time. The satellite imagery WLR rates are more 
accurate than the EPR since the EPR results only incorporated two 
shorelines and there is no shoreline uncertainty weighting to reduce 
erosional bias. As a result of this, relying on the rates from a Landsat 
Multispectral Scanner (MSS) and a Landsat Thematic Mapper (TM) 
single-step medium-term time-series is not recommended. Similarly, 
reliance on results from a pairing of a Landsat TM with a pansharpened 
Landsat Enhanced Thematic Mapper Plus (ETM+) should also be made 
with caution. However, these issues aside, analysing the medium-term 
trends with the EPR method, in cases where there are less than three 
shorelines, can still help identify any temporal non-linearity masked by 
the WLR long-term trends (Ruggiero et al., 2013). 

5.2. Salt marsh evolution in response to external drivers 

The recent evolution (1976–2020) of the salt marsh shorelines was 
mostly induced by tidal channel dredging and inlet stabilisation (Car
rasco et al., 2021). The observed minor erosion (up to − 1.0 m/yr) on the 
shores of all the salt marshes bordering the Faro Channel (West, North 
and South marshes, Appendix D, Fig. D.3) is likely related to channel 
dredging and marine traffic, similar to elsewhere in the lagoon 
(Arnaud-Fassetta et al., 2006; Kombiadou et al., 2018). The South marsh 
has a northeast to a southwest gradient of increasing exposure to hy
drodynamic forcing and its southern-most point is opposite the 
Faro-Olhão Inlet (Carrasco et al., 2021). In the 1976–2020 period, the 
South marsh exhibited a combination of static and accretional behaviour 
on its sheltered flanks, while being in erosion on the exposed flanks. The 
South mash has localised erosion opposite the Faro-Olhão Inlet with an 
average rate of − 3.3 m/yr (Fig. 5e; Appendix D, Table D.1). The West 
marsh in comparison was dynamic along its entire perimeter with 
erosion on the flank adjacent to the Faro Channel and accretion on the 
side flanking the South marsh (Fig. 5e; Appendix D, Table D.1). 

Overall, the satellite remote sensing long-term rates were relatively 
successful in capturing the dynamism of the aerial photography salt 
marsh shorelines and provided reasonable results. The satellite imagery 
rates for the shorelines with net long-term erosion or accretion greater 
than ± 0.4 m/yr were notably accurate (Appendix D, Fig. D.3). This 
enhanced accuracy is a result of dual aspects, the shoreline environ
mental category (Fig. 8) and that low rates of shoreline change are more 
vulnerable to the faux dynamism caused by the spatial resolution limits 
of the satellite imagery (Morton et al., 2004). In addition, by comparing 
the satellite imagery 1976–2020 shoreline rates with the salt marsh 
shoreline sinuosity and environmental category (Figs. 7 and 8) it was 
found that the most extreme rates of erosion and highest accuracy were 
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associated with smooth shorelines adjacent to unvegetated tidal flats, 
while areas of accretion were marked by the offshore expansion of 
complex transitional zones. These findings align with those of Leonardi 
et al. (2016), who found that shorelines with the greatest erosion rates 
were less intricate, and Elsey-Quirk et al. (2019) who noted a connection 
between salt marsh morphodynamics and vegetation patterns. 

5.3. Satellite remote sensing overall performance 

In literature, medium to high spatial resolution multispectral data is 
an accepted alternative to hyperspectral high-resolution data (Belluco 
et al., 2006; Klemas, 2013a; Young et al., 2017), unless salt marsh 
vegetation detailed analysis is required (Guo et al., 2017; Müllerová 
et al., 2017; Silvestri et al., 2003). There is a general lack of salt marsh 
studies using long-term time-series that reach four decades, which re
duces the meaningfulness of any morphological, socio-economic and 
ecosystem service analysis (Barbosa et al., 2015; Carrasco, 2019). 
Among other things, long-term trends can help distinguish salt marsh 
system responses to change and forms a reference baseline to con
textualise medium-to short-term times-series (Moffett et al., 2015; 
Vernberg, 1993). Thus, the pooling of all the open-source satellite 
remote sensing data available to form long-term time-series used in this 
study is advantageous and valid. 

In other studies, the paucity of suitable satellite remote sensing im
ages and sensor reflectance conversion algorithms, as well as the low 
resolution of the early years of the Landsat programme, frequently limits 
the length of the time-series (e.g. Campbell and Wang, 2020; Laengner 
et al., 2019; Vogelmann et al., 2016). Usually, a minimum of 30 m 
spatial resolution was used to map coastal wetlands and the MSS data 
was disqualified from the analyses (e.g. Bortels et al., 2011; Rebelo et al., 
2017; Turpie et al., 2015). The few studies that have used Landsat MSS 
data for salt marshes have done so with a significant sacrifice of spatial 
accuracy or have fused it with supplementary data (Jefferies et al., 2006; 
Niu et al., 2012; Sivakumar and Ghosh, 2016). These studies neither 
incorporate all Landsat sensors nor are quadridecadal in duration. Using 
the method employed in this study, it was shown that the inclusion of 
the Landsat MSS data allowed eco-geomorphologically valuable 
long-term trends to be derived and the inaccuracies due to the inclusion 
of this data can be at least partially compensated for by using the WLR 
method to calculate shoreline rates-of-change. In addition, the mapping 
accuracy and uncertainty assessment of satellite remote sensing wetland 
maps and long-term monitoring are needed but lacking (Perennou et al., 
2018; Pham et al., 2019; Reschke and Hüttich, 2014). The satellite 
remote sensing tool investigated in this study fulfils an element of that 
knowledge gap. Furthermore, since the satellite remote sensing method 
tested quantifies the associated accuracies, it can support more accurate 
salt marsh ecosystems valuation (Barbosa et al., 2015). 

During the literature review, no equivalent studies were found that 
quantified the relative accuracy of aerial photography and open-source 
optical satellite remote sensing for salt marsh shoreline delineation and 
monitoring, even at less than a quadridecadal duration. However, 
although not directly comparable, studies using satellite imagery to map 
salt marshes by incorporating external data sets, indexes and classifi
cation methods have achieved classification accuracies of over 90% (e.g. 
Laengner et al., 2019; Lopes et al., 2020; Mao et al., 2020). Some in
accuracy causing factors encountered in this study were also noted by 
other remote sensing studies of salt marshes. These include difficulties 
distinguishing the land border (Laengner et al., 2019); salt marsh area 
overestimation (Belluco et al., 2006; Rebelo et al., 2017); interference of 
surface sediment spectral properties with that of salt marsh vegetation 
(Belluco et al., 2006; Silvestri et al., 2003); issues detecting salt marsh 
patches in the transitional zone (Arnaud-Fassetta et al., 2006; Bortels 
et al., 2011; Kelleway et al., 2009); accuracy differences between 
different spatial resolutions adding error to time-series (Guo et al., 2017; 
Rebelo et al., 2017); longer perimeters resulting in lower levels of ac
curacy (Fisher et al., 2016) and; surface reflectance pixel mixing (Bortels 

et al., 2011; Klemas, 2013b; Reschke and Hüttich, 2014). Thus, the 
sources of error encountered in this study are generalised in the research 
field and not specific limitations of the satellite remote sensing method 
proposed. 

5.4. Future research directions 

The study limitations are (a) the Landsat pansharpening bands and 
the Landsat MSS sensor bands were not yet available as a Level 2 product 
and this may be a source of inaccuracy in the results; (b) the oldest 
sensors within the Landsat programme have lower spatial resolution and 
thus introduce additional error, although their inclusion is balanced by 
the need to derive long-term trends; (c) the seasonality in salt marsh 
vegetation spectral signatures may affect the accuracy of the method; (d) 
the method is limited in its ability to monitor gradual change at small 
scales due to lack of temporal density, spatial resolution and the masking 
effects of faux shoreline change (Vogelmann et al., 2016); (e) the sat
ellite remote sensing salt marsh mapping accuracy assessment that has 
been undertaken in this study is made with reference to an alternative 
remote sensing method, aerial photography, and not ground truth data. 

There are future research directions that could mitigate these current 
limitations by expanding the scope and improving the accuracy of long- 
term time-series using open-source optical satellite remote sensing data. 
From a technical perspective, trialling the fusion of synthetic aperture 
radar (SAR) and multispectral data in a long-term time-series is a 
promising technique that should be explored (Pham et al., 2019). In 
addition, coupling the satellite remote sensing method with additional 
data in modelling environments could enhance the ability to link drivers 
to salt marsh response and ecosystem service availability (Barbosa et al., 
2015). Furthermore, spatial pattern metrics have been shown to intro
duce fewer biases than total areas in salt marsh remote sensing studies 
(Wu, 2019). Hence, the integration of a fractal index (e.g. Carrasco et al., 
2021; Dubuc et al., 1989; Rebelo et al., 2017) is recommended as a 
measure for transitional zones as well as a geomorphic indicator of the 
degradation state of salt marshes (Leonardi et al., 2016) and intertidal 
ecosystem fragmentation (Cunha et al., 2005). In addition, a broad 
range of salt marshes in distinct environmental conditions need to be 
analysed to further clarify how specific salt marsh characteristics and 
local climate affects the accuracy of the satellite remote sensing results. 
This would consolidate the applicability limits of the method on a global 
scale. The collection of further salt marsh case studies would also define 
the apparent directly proportional relationship between salt marsh 
perimeter and the equivalent surface area and average salt marsh 
shoreline offshore biases in long-term time-series (Fig. 7). If such a 
relationship could be established, predictions could be made of the 
inherent biases in any satellite remote sensing salt marsh analysis based 
on its perimeter. This could in turn be used to make predictive correc
tions to the satellite remote sensing results and thus improve the accu
racy of the method. 

6. Conclusions 

This study demonstrated that the open-source multispectral satellite 
remote sensing archive can be used to map salt marsh extents and 
monitor their long-term shoreline dynamics at a level of accuracy 
appropriate for the many ecological assessment and management ap
plications that do not require fine-scale detail. In the central section of 
the Ria Formosa coastal lagoon during 1976–2020, there was a net loss 
of salt marsh habitat, with the maximum rates of salt marsh erosion 
being concentrated opposite the Faro-Olhão tidal Inlet. 

The sensitive accuracy analysis found that the satellite remote 
sensing salt marsh shoreline’s positional accuracy is a function of sensor 
characteristics as well as the salt marsh geometry, environment and 
temporal dynamism. The aerial photography salt marsh areas and pe
rimeters were respectively overestimated and underestimated by the 
satellite remote sensing results. The Landsat-8 shorelines were slightly 
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less accurate and on average 1.8 m inland of the coincident Sentinel-2 
shorelines. The higher spatial resolution of the latter sensor resulted in 
slightly larger areas and longer perimeters. 

The increasing spatial resolution over time resulted in temporally 
dynamic shoreline offshore bias and thus faux erosion in the satellite 
imagery time-series. Furthermore, the shoreline and area inaccuracies of 
the satellite remote sensing method were found to be a cumulative 
function of salt marsh perimeter. The satellite imagery shorelines are 
least accurate when there are complex boundary conditions that require 
a higher spatial resolution to delineate. The intricate shorelines of the 
transitional zones were the focal points of error for all the satellite im
agery shorelines and these amplified the offshore bias and faux erosion 
present in the time-series. The outcome of the analysis points to an 
interesting aspect of mapping these tidally dominated environments. 
Apart from being able to examine the long-term development of each 
morphology individually, it is also possible to explore the transitional 
processes between different states of eco-geomorphological complexity. 

Overall, the satellite remote sensing methodology evaluated in this 
study is suitable as a tool for salt marsh shoreline mapping and moni
toring in a research and operational coastal management context, as 
long as due regard is given to its specific limitations. Although not as 
accurate as the aerial photography data, the satellite remote sensing 
data returns reasonable estimates and can approximate long-term 
shoreline dynamics of interest in a cost-effective way. 
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Appendix A 

A.1 Salt Marsh Morphology and Vegetation

Fig. A.1. (a) Salt marsh platform above the tidal flats with halophytic vegetation displaying a mosaic zonation pattern [Blount, 19-06-2020]; (b) salt marsh 
vegetation showing vertical zonation [Blount, 29-06-2020]; (c) middle to low salt marsh halophytes Sarcocornia perennis and Halimione portulacoides [Blount, 11-06- 
2020]; (d) Spartina maritima and Zostera noltii colonising the low elevation transitional zone between salt marsh and tidal flats [Blount, 29-06-2020]. 
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Appendix B 

B.1 Remote Sensing and Field Datasets  

Table B.1 
Attributes of the satellite remote sensing and aerial photography datasets used in the study.  

Year Type Sensing Date Resolution (m) No. Bands 

1976 Aerial Photograph 31 August 0.73 1 
Landsat-1 MSS Image 29 March 57.00* 4 

1989 Aerial Photograph 4 May 0.38 1 
Landsat-5 TM Image 23 March 30.00 7 

2002 Aerial Orthophotograph June** 0.70 3 
Landsat-7 ETM + Image 15 February 15.00*** 8 

2014 Aerial Orthophotograph 22 October 0.15 4 
Landsat-8 OLI Image 31 May 15.00*** 8 

2016 Landsat-8 OLI Image 08 August 15.00*** 8 
Sentinal-2A MSI Image 08 August 10.00 10 

2018 Landsat-8 OLI Image 02 January 15.00*** 8 
Sentinal-2B MSI Image 02 January 10.00 10 

2020 Landsat-8 OLI Image 25 February 15.00*** 8 
Sentinal-2B MSI Image 24 February 10.00 10 

*Original spatial resolution 80 m up sampled to 57 m prior to public distribution (Read et al., 2020; Young et al., 2017). 
**Missing date metadata. 
***Pansharpening applied to increase spatial resolution from 30 m to 15 m. 

Field observations included three GPS topographic transects, collected on 13 January 2017, that intersect the salt marsh shoreline in the study 
area. These profiles are named South Salt Marsh Profile 1 (S1), South Salt Marsh Profile 2 (S2) and North Salt Marsh Profile 1 (N1). The elevation 
profile along each transect and the sampling points were obtained by using a Real-Time Kinematic Differential Global Positioning System (RTK-GPS, 
Trimble R6) sampling at 1 Hz. The elevation units were in metres relative to mean sea level (MSL). On average the three GPS transects had 30 points in 
each profile, N1 had fewer points due to difficulties traversing the salt marsh. The measurements were taken at a mean distance of ~1 m and the 
vertical accuracy was in the order of centimetres. These transects were taken as part of a study which aimed to validate the salt marsh zonation, 
especially in the transition zone between tidal flat and low salt marsh, and to also track the bed slope transitions. 

B.2 Image Selection Criteria and Processing 

The selection of the time-series years was dictated by the need for the simultaneous availability of both an aerial photography survey and a suitable 
satellite remote sensing image. Considering this requirement, the years chosen for the aerial photography and satellite remote sensing comparison 
were 1976, 1989, 2002 and 2014. There were no aerial photography datasets available beyond 2014 and the Sentinel-2 programme did not launch 
until 2015. Therefore, the comparability and complementary potential of Sentinal-2 was gauged against Landsat-8 in 2016, 2018 and 2020, which also 
allowed the satellite remote sensing time-series to be extended to 44 years. SRS atmospherically corrected data was preferred as it provides an accurate 
and stable surface reflectance record, as recommended for a time-series analysis (Roy et al., 2014; Vogelmann et al., 2016). Furthermore, this 
analysis-ready data was the most appropriate choice for this study since the study objectives require standardised, established open-source globally 
available satellite remote sensing images that are not time-consuming nor require expertise to process. 

The satellite remote sensing image selection was decided by cloud coverage, tidal level and the season. The tidal stage response can be variable 
across salt marsh systems, and it has been demonstrated that the accuracy of long-term trends in salt marshes can be enhanced by tidal filtering of 
images (Campbell and Wang, 2018, 2020). Thus, only images at a low tidal stage were considered to avoid inundation induced salt marsh boundary 
delineation errors. There was only one suitable satellite remote sensing image available for 1976 and since there is seasonal variation in salt marsh 
vegetation spectral signatures (Gao and Zhang, 2006), the remaining selection of satellite remote sensing images for the later years were filtered to be 
from a similar time of year as possible. In the case of the Sentinel-2 and Landsat-8 pairs of satellite remote sensing images, they were selected to also be 
coincident or at least within 24 h of each other to enhance comparability. 

The remote sensing images were prepared and analysed in ArcGIS Desktop 10.5 (ESRI, 2016) and Sentinel Application Platform (SNAP) v7.0.3 
(European Space Agency ESA, 2019). The 1976 and 1989 aerial photography rasters were georectified with a method analogous to Amado (2019) and 
Kombiadou et al. (2019). The surface reflectance correction of the 2016 and 2018 Sentinel-2 images was undertaken with the Sen2Cor 280 extension 
in SNAP, as for these dates Level 2A data was not available on the open-access hub. For optical sensors with a panchromatic band, pansharpening - an 
established technique for increasing the spatial resolution of multispectral bands (Meng et al., 2019; Vivone et al., 2015) - was applied as per the 
context adaptive Gram-Schmidt (GSA) method. A component substitution method, GSA is a robust choice for this study as it is less vulnerable to 
aliasing and misregistration between the panchromatic band and multispectral bands and is a less computationally intense method (Duran et al., 2017; 
Meng et al., 2019; Vivone et al., 2015). In addition, the GSA technique has been demonstrated to be suitable for Landsat-8 Operational Land Imager 
(OLI) applications and has comparatively low spatial distortion (Vivone et al., 2015; Zhang and Roy, 2016). 

Appendix C 

C.1 Salt Marsh Shoreline Accuracy and Validation 

The average root-mean-square (RMS) values for the georeferenced aerial photographs of 1976 and 1989 were 0.9 m and 0.5 m respectively. The 
shoreline location uncertainties assigned to each shoreline as part of the Digital Shoreline Analysis System (DSAS) analysis were between 0.4 m (2014) 
and 3.1 m (1976) for the aerial photography data while for the satellite remote sensing data these ranged between 15 m (Sentinal-2B 2020) to 69 m 
(Landsat-1 1976). Both the RMS and shoreline location uncertainties are in the horizontal plane. 

During validation, the topographical transects from fieldwork data collection (not published) were overlaid with the delineated satellite remote 
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sensing and aerial photography shorelines and the horizontal and vertical coordinates of these shorelines on the transect profiles was calculated. As 
there was no field data available to validate the horizontal position directly and these transects are from sections of salt marsh that have shown 
minimal lateral migration over the last four decades (Fig. 5a; Carrasco et al., 2021), the remote sensing shoreline elevation ranges derived from the 
transects were compared with elevation ranges for lower-middle salt marsh in literature (Table C.1). The remote sensing shoreline elevations from the 
profiles were generally within the lower-middle salt marsh ranges identified in Arnaud-Fassetta et al. (2006), Sun et al. (2018) and Andrade (1990) 
(0.0–0.4/2.0 m, MSL). The lower bound of the range in Costa et al. (1996) and Bettencourt (1994) (0.5–1.0 m, MSL) was reflective of the upper-middle 
salt marsh bionomic range of Arnaud-Fassetta et al. (2006) and thus the elevation ranges from the remote sensing shorelines were consistently lower 
than these. Overall, the elevation ranges derived for the remote sensing shorelines from the field profiles are within the expected elevation range for a 
lower-middle salt marsh boundary in literature.  

Table C.1 
The elevation ranges (in metres above Mean Sea Level, MSL) of the delineated shorelines on the topographic transects used for shoreline validation (AP- Aerial 
Photograph; SRS - Satellite Remote Sensing, S2B – Sentinel 2B; L8 – Landsat-8; L7 – Lansat-7; L5 – Landsat-5; L1 – Landsat-1)  

Salt Marsh Shoreline SRS S2B 
2020 

SRS L8 
2020 

AP 2014 SRS L8 
2014 

AP 2002 SRS L7 
2002 

AP 1989 SRS L5 
1989 

AP 1976 SRS L1 
1976 

Lower-middle salt 
marsh range 
(m, MSL) 

[-0.30 to 
0.14] 

[0.08 to 
0.50] 

[0.15 to 
0.31] 

[0.08 to 
0.23] 

[0.16 to 
0.30] 

[-0.34 to 
0.62] 

[0.25 to 
0.48] 

[-0.29 to 
0.32] 

[0.26 to 
0.51] 

[0.17 to 
0.42]  

As a further validation, the transect profiles and shoreline points were overlaid with bionomic elevation ranges from a study of the Ria Formosa salt 
marshes (Arnaud-Fassetta et al., 2006). Generally, the aerial photography 2014 shorelines were approximately at MSL, the central part of the 
lower-middle salt marsh range (Fig. C.1). The remaining salt marsh shorelines spanned the whole lower-middle salt marsh range, sometimes extending 
to the upper-middle or lower salt marsh ranges in profiles N1 and S2. Compared to the Landsat-8 2020 shoreline, the Sentinel-2B 2020 shoreline 
consistently favoured the low salt marsh zone and the satellite remote sensing shorelines are on average more offshore than their aerial photography 
counterparts.

Fig. C.1. Location of field topographical transects and the satellite remote sensing (SRS) and aerial photography (AP) shoreline positions and salt marsh bionomic 
ranges on the field topographic transects N1, S2 and S1. The approximate 2017 shoreline position is indicated by the vertical dotted line intersecting each profile. 
(The main image contains RGB mosaic of the 2014 aerial orthophotos; the overview image [Blount, 2020], contains modified Copernicus Sentinel-2B Level 2A data 
[24-02-2020]). 

As a result of its high spatial resolution and temporal closeness, the aerial photography 2014 shoreline is a reliable indication of the actual 2017 salt 
marsh shoreline position on the transect profiles. Given the lateral stability of these shorelines over the last decades (Fig. 5a; Carrasco et al., 2021), the 
aerial 2014 shoreline can also approximately indicate the lateral inaccuracy of the other remotely sensed shorelines. The results validate the vertical 
and horizontal position of the 2014 aerial shoreline and highlight variable degrees of error in the lateral position of the other remote sensing 
shorelines. 
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Appendix D 

D.1 Salt Marsh Shoreline Analysis

Fig. D.1. Maps depicting the distance (m) of: (a) the 1976 Landsat-1 shoreline relative to the aerial photography (AP) 1976 shoreline; (b) the 1989 Landsat-5 
shoreline relative to the AP 1989 shoreline; (c) the 2002 Landsat-7 shoreline relative to the AP 2002 shoreline; (d) The 2014 Landsat-8 shoreline relative to the 
AP 2014 shoreline and (e) the 2020 Landsat-8 shoreline relative to the 2020 Sentinel-2B shoreline. ([Blount, 2020], contains modified Copernicus Sentinel-2B data 
[24-02-2020], processed by ESA).  

Table D.1 
Summary of the satellite remote sensing (SRS) and aerial photography (AP) salt marsh shoreline Weighted Linear Regression (WLR; long-term) and End Point Rate 
(EPR; medium-term) results from the shoreline rate analysis.  

Salt Marsh 
Area 

Time 
Period 

Data 
Source 

Average Rate 
(m/yr) 

Rate Uncertainty 
(m/yr) 

Maximum Erosion 
Rate (m/yr) 

Average Erosion 
Rate (m/yr) 

Maximum Accretion 
Rate (m/yr) 

Average Accretion 
Rate (m/yr) 

Long-term Weighted Linear Regression Shoreline Rates 
North 1976–2014 AP − 0.01 ±0.02 − 0.81 − 0.12 1.64 0.16 

SRS − 0.26 ±0.51 − 4.15 − 0.59 3.57 0.48 
1989–2014 AP 0.00 ±0.04 − 0.90 − 0.13 1.79 0.18 

SRS − 0.21 ±0.75 − 2.41 − 0.62 5.41 0.64 
1976–2020 SRS − 0.05 ±0.27 − 2.68 − 0.42 3.97 0.44 

East 1976–2014 AP 0.08 ±0.03 − 0.74 − 0.14 1.16 0.15 
SRS − 0.01 ±0.24 − 2.03 − 0.42 1.51 0.39 

1989–2014 AP 0.08 ±0.04 − 0.79 − 0.14 1.25 0.17 
SRS 0.03 ±0.52 − 1.89 − 0.43 1.85 0.41 

1976–2020 SRS 0.09 ±0.16 − 0.95 − 0.31 1.16 0.39 

(continued on next page) 
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Table D.1 (continued ) 

Salt Marsh 
Area 

Time 
Period 

Data 
Source 

Average Rate 
(m/yr) 

Rate Uncertainty 
(m/yr) 

Maximum Erosion 
Rate (m/yr) 

Average Erosion 
Rate (m/yr) 

Maximum Accretion 
Rate (m/yr) 

Average Accretion 
Rate (m/yr) 

South 1976–2014 AP − 0.28 ±0.08 − 5.19 − 0.44 1.60 0.13 
SRS − 0.55 ±0.35 − 4.93 − 0.90 1.73 0.37 

1989–2014 AP − 0.25 ±0.13 − 5.81 − 0.45 1.99 0.16 
SRS − 0.49 ±0.50 − 5.60 − 0.90 2.00 0.38 

1976–2020 SRS − 0.46 ±0.18 − 6.38 − 0.8 1.22 0.29 
West 1976–2014 AP 0.22 ±0.18 − 1.27 − 0.33 1.76 0.56 

SRS 0.22 ±0.48 − 0.89 − 0.33 1.82 0.63 
1989–2014 AP 0.31 ±0.39 − 1.26 − 0.37 2.34 0.65 

SRS 0.34 ±1.07 − 0.71 − 0.26 2.26 0.70 
1976–2020 SRS 0.26 ±0.26 − 0.78 − 0.35 1.73 0.66 

Medium-term End Point Shoreline Rates 
North 1976–1989 AP − 0.06 ±0.27 − 1.60 − 0.26 2.15 0.21 

SRS − 0.95 ±5.86 − 21.18 − 3.34 6.95 2.06 
1989–2002 AP 0.00 ±0.20 − 2.19 − 0.18 3.45 0.20 

SRS 0.06 ±2.75 − 6.02 − 1.07 7.38 1.13 
2002–2014 AP 0.00 ±0.17 − 1.55 − 0.17 2.04 0.24 

SRS − 0.35 ±1.83 − 5.07 − 0.98 10.02 1.02 
East 1976–1989 AP 0.01 ±0.27 − 1.61 − 0.37 2.76 0.27 

SRS − 0.27 ±5.86 − 5.61 − 1.89 8.44 2.00 
1989–2002 AP 0.15 ±0.20 − 1.10 − 0.18 2.66 0.31 

SRS − 0.08 ±2.75 − 3.05 − 0.92 2.70 0.97 
2002–2014 AP 0.03 ±0.17 − 0.96 − 0.16 1.83 0.16 

SRS 0.09 ±1.83 − 3.31 − 0.67 3.88 0.76 
South 1976–1989 AP − 0.44 ±0.27 − 9.89 − 0.80 1.28 0.24 

SRS − 1.11 ±5.86 − 19.29 − 3.04 6.78 1.88 
1989–2002 AP − 0.36 ±0.20 − 9.01 − 0.77 4.29 0.31 

SRS − 0.57 ±2.75 − 9.99 − 1.71 5.66 0.94 
2002–2014 AP − 0.15 ±0.17 − 6.15 − 0.32 2.47 0.17 

SRS − 0.49 ±1.83 − 6.46 − 1.09 2.14 0.55 
West 1976–1989 AP − 0.37 ±0.27 − 2.02 − 0.71 1.54 0.52 

SRS − 0.65 ±5.86 − 4.88 − 1.60 5.55 1.43 
1989–2002 AP − 0.10 ±0.20 − 1.49 − 0.51 1.86 0.42 

SRS − 0.02 ±2.75 − 1.98 − 0.70 3.09 1.01 
2002–2014 AP 0.67 ±0.17 − 1.07 − 0.43 3.88 1.17 

SRS 0.54 ±1.83 − 1.38 − 0.59 3.44 1.20   
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Fig. D.2. Maps depicting salt marsh shoreline End Point Rates (EPR) (m/yr) for: (a) aerial photography (AP) 1976–1989; (b) Satellite remote sensing (SRS) 
1976–1989; (c) AP 1989–2002; (d) SRS 1989–2002; (e) AP 2002–2014; and (f) SRS 2002–2014. ([Blount, 2020], contains modified Copernicus Sentinel-2B data [24- 
02-2020], processed by ESA).  
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Fig. D.3. (a) Map highlighting the salt marsh shorelines where the aerial photography (AP) weighted linear regression (WRL) rates-of-change (m/yr) for the 
1976–2014 time-series are more than ± 0.4 m/yr; (b) graph showing the relative accuracy of the average satellite remote sensing (SRS) and AP 1976–2014 WRL 
shoreline rates-of-change for specific sections of salt marsh shoreline. ([Blount, 2020], contains modified Copernicus Sentinel-2B data [24-02-2020], processed 
by ESA). 

Appendix E. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ecss.2021.107664. 
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backbarrier salt marshes related to the Barra Nova inlet dynamics (Ria Formosa, 

T.R. Blount et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.ecss.2021.107664
http://hdl.handle.net/10400.1/13895
http://refhub.elsevier.com/S0272-7714(21)00513-8/sref2
http://refhub.elsevier.com/S0272-7714(21)00513-8/sref2
https://doi.org/10.1016/j.margeo.2004.05.016
https://doi.org/10.1016/j.margeo.2004.05.016
https://doi.org/10.1016/j.csr.2005.12.008
https://doi.org/10.1002/2015WR018318
https://doi.org/10.1890/10-1510.1
https://doi.org/10.1016/j.ecolind.2015.01.007
https://doi.org/10.1016/j.ecolind.2015.01.007
https://doi.org/10.1016/j.rse.2006.06.006
https://doi.org/10.1016/j.rse.2006.06.006


Estuarine, Coastal and Shelf Science 266 (2022) 107664

19
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